Tarefa da aula-5

Exercício1

O tempo até a ocorrência de um defeito (isto é, o tempo de duração) numa TV é uma variável Exponencial com parâmetro I = 1/3 anos.

Pede-se:

- a) Calcule a probabilidade de uma TV "pifar" nos primeiros 2 anos de uso.
- b) Calcule a probabilidade de uma TV "pifar" depois dos 5 anos.
- c) Calcule a probabilidade de uma TV "pifar" entre 3 e 5 anos.

OBSERVAÇÕES IMPORTANTES:

- Mostrar todos os passos de cálculo para chegar ao valor final.
- Cálculos com 4 casas decimais.

- Exercício 2

Numa certa empresa de informática, o salário *anual* médio dos funcionários com menos de 5 anos de experiência é R\$ 24000, com desvio padrão de R\$ 3000. Suponha que os salários têm distribuição Normal e calcule os valores pedidos a seguir.

- a) Qual a probabilidade do salário anual de um funcionário qualquer com menos de 5 anos de experiência ser menor que R\$ 20000?
- b) Qual deve ser o valor do salário anual de um funcionário com menos de 5 anos de experiência se 95% dos funcionários (com menos de 5 anos de experiência) tem salário abaixo dele?
- c) Toma-se uma amostra de 36 funcionários com menos de 5 anos de experiência. Qual a probabilidade do salário médio na amostra exceder R\$ 24500?
- d) Toma-se uma amostra de 12 funcionários com menos de 5 anos de experiência. Qual a probabilidade do maior salário na amostra exceder R\$ 28000?

OBSERVAÇÕES IMPORTANTES:

- Para cada item, esboce gráfico da função de distribuição de uma Normal (0,1) indicando claramente a área pedida com os respectivos valores.
- Mostrar todos os passos de cálculo para chegar ao valor final.
- Cálculos com 4 casas decimais.
- Tabela da Normal fazer interpolação se precisar (4 casas decimais)

- Exercício 3

O retorno de uma aplicação financeira de risco num intervalo de uma semana é uma variável com distribuição Uniforme no intervalo –2% a 1.8%.

Pede-se:

- I- A probabilidade do retorno do investimento nesta semana ser positivo.
- II- A probabilidade do retorno estar entre −1% e +1%.
- III-A probabilidade do retorno exceder 0.5%.

OBSERVAÇÕES IMPORTANTES:

- Mostrar todos os passos de cálculo para chegar ao valor final.
- Cálculos com 4 casas decimais.

Exercício 4

Um produto pesa em média 50g com desvio padrão de 2g. Este produto é embalado em caixas com 150 unidades. Sabe-se que as caixas vazias pesam em média 500g com desvio padrão de 5g. Admitindo-se que os pesos das caixas e dos produtos sejam independentes entre si e modelados pela distribuição normal, responda as seguintes perguntas:

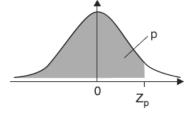
- a) A área de controle de qualidade da produção detecta a existência de não conformidades a partir do peso das caixas cheias. Ela tolera um erro de mais ou menos 0.7% com relação ao valor médio da caixa cheia. Calcule a probabilidade de termos uma caixa fora do intervalo de conformidade.
- b) Assumindo uma amostra de m caixas cheias, qual a probabilidade do maior peso dentro desta amostra exceder a média de uma caixa cheia? Calcule para m = 2; 3 e 10.

OBSERVAÇÕES IMPORTANTES:

- Para cada item, esboce gráfico da função de distribuição de uma Normal (0,1) indicando claramente a área pedida com os respectivos valores.
- Mostrar todos os passos de cálculo para chegar ao valor final.
- Cálculos com 4 casas decimais.
- Tabela da Normal fazer interpolação se precisar (4 casas decimais)

Exercício 5

Os resultados de uma pesquisa que mediu a altura dos alunos da PUC-Rio, sustentam a hipótese de que a altura de um aluno, sorteado aleatoriamente, é uma variável aleatória Normal com média 1,71m e desvio padrão 0,04m. Baseado nesta informação, responda as questões seguintes:


- a) Qual é o percentil de 80% da altura dos alunos da PUC-Rio?
- b) Qual a probabilidade de algum aluno selecionado ao acaso, ter altura entre 1,68m e 1,76m?
- c) Se selecionarmos 12 alunos ao acaso e de maneira independente, qual é a probabilidade que a altura média deles seja superior a 1,70m?
- d) Considerando a mesma amostra de 12 alunos da questão c), qual a probabilidade de que a maior altura da amostra não exceda 1,70m?

OBSERVAÇÕES IMPORTANTES:

- Para cada item, esboce gráfico da função de distribuição de uma Normal (0,1) indicando claramente a área pedida com os respectivos valores.
- Mostrar todos os passos de cálculo para chegar ao valor final.
- Cálculos com 4 casas decimais.
- Tabela da Normal fazer interpolação se precisar (4 casas decimais)

OBSERVAÇÃO: UTILIZAR A TABELA DA NORMAL ANEXO.

Tabela I: Distribuição Normal Padrão Acumulada

Fornece $\Phi(z)$ = P(- ∞ < Z \leq z), para todo z, de 0,01 em 0,01, desde z = 0,00 até z = 3,59 A distribuição de Z é Normal(0;1)

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3,5	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998