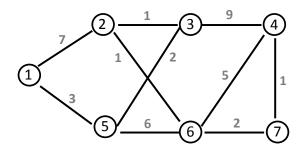
ANÁLISE DE ALGORITMOS (INF 1721)

2^a Prova

- Você deve justificar todas as suas respostas;
- As suas respostas são estritamente pessoais. Qualquer plágio ou tentativa de plágio implicará na nota zero.
- Escolha quatro exercícios para resolver e os anote no início do seu caderno de respostas. Se houver cinco exercícios resolvidos, somente os quatro primeiros serão considerados.

1. (2.5 pts)

(a) (1.0 pt) Escreva um pseudocódigo do algoritmo de Djikstra que encontra o caminho mais curto entre dois vértices i e j em um grafo conexo G (com pesos positivos nas arestas). Em seguida, aplique esse algoritmo para encontrar o caminho mais curto entre os vértices 1 e 4 no seguinte grafo.



(b) (1.5 pts) Em um grafo bipartido completo, todos os vértices de uma partição são ligados a todos os vértices da outra partição. Qual é a altura da árvore gerada por uma BFS em um grafo bipartido completo? Qual é a altura da árvore gerada por uma DFS em um grafo bipartido completo?

2. (2.5 pts) Responda se as seguintes afirmações são **verdadeiras** (**V**) ou **falsas** (**F**). Cada resposta correta vale 0.25 pontos. Para cada resposta **F** escreva uma justificativa, correção ou contraexemplo de até duas linhas.

Exemplo: Merge sort tem complexidade linear.

Resposta: F: Falso. A complexidade de pior caso do Merge sort é $\Theta(n \log n)$.

- a) É conhecido que o problema da mochila integral admite um algoritmo de programação dinâmica. Logo, esse problema está na classe P;
- b) Se um problema X se reduz ao problema Z em tempo polinomial e $Z \in NP$ -completo, então $X \in NP$ -completo;
- c) Encontrar uma árvore geradora mínima e testar se um número é primo são problemas que estão em P mas não em NP;
- d) O algoritmo de caminho mais curto de Bellman-Ford só funciona com pesos positivos;
- e) O problema da mochila fracionada pode ser resolvido por um algoritmo guloso;
- f) Algoritmos gulosos são conhecidos por acharem a solução ótima tomando decisões locais que não são ótimas:
- g) Se P=NP, então todos os problemas NP-completos podem ser resolvidos em tempo polinomial;
- h) Busca binária, merge sort, e quick sort podem ser categorizados como algoritmos de divisão e conquista;
- i) Algoritmos branch-and-bound podem resolver problemas NP-completos;
- j) O algoritmo de Prim usa iterativamente a propriedade de corte para achar uma árvore geradora de peso mínimo.

3. (2.5 pts) Seja G = (V, E) um grafo completo não direcionado que possui exatamente k arestas de peso 0 e o restante possui peso 1. Assuma que também temos disponível para cada vértice $v \in V$ uma lista das arestas adjacentes com peso 0. Proponha um algoritmo eficiente que encontra uma árvore geradora de custo mínimo em G.

4. (2.5 pts) Considere o seguinte problema de otimização:

SCHEDULING PROBLEM: Considere uma lista de n tarefas, cada uma com uma data de começo e_i , uma data de término l_i , e um peso positivo inteiro q_i . Assuma que essas tarefas são listadas em ordem crescente de data de término. O objetivo consiste em achar um subconjunto de tarefas realizadas tal que:

- a qualquer momento no tempo, existe no máximo uma tarefa sendo realizada;
- a soma dos pesos das tarefas selecionadas não ultrapassa uma capacidade Q;
- o número total de tarefas realizadas é maximizado.
- (a) (0.8 pts) Mostre que INTEGER KNAPSACK PROBLEM \leq_p SCHEDULING PROBLEM;
- (b) (1 pt) Seja OPT[k,q] o maior número de tarefas que podem ser realizadas usando unicamente as tarefas do intervalo $\{1,\ldots,k\}$ com uma capacidade total menor que q. Escreva o caso base e a relação de recorrência que permitem o cálculo de OPT[k,q] para cada $k \in \{1,\ldots,n\}$ e cada $q \in \{0,\ldots,Q\}$;
- (c) (0.7 pts) Baseado em (b), descreva um pseudocódigo para o SCHEDULING PROBLEM ;
- (d) (BÖNUS: 0.5 pts) Faça a análise da complexidade assintótica desse algoritmo.

5. (2.5 pts) Considere os seguintes algoritmos:

- O algoritmo 1 resolve o problema de tamanho n dividindo-o em duas recursões de tamanho n-1 seguido por uma etapa que combina os resultados em tempo constante.
- O algoritmo 2 resolve o problema de tamanho n dividindo-o em 4 subproblemas de tamanho n/2 em cada recursão. Todos os subproblemas são combinados em tempo constante.
- O algoritmo 3 resolve o problema de tamanho n abrindo uma recursão somente na primeira metade seguido por uma etapa polinomial em $O(n^2)$.
- a) (0.6 para cada algoritmo) Apresente o T(n) e a complexidade assintótica em termos de $O(\cdot)$ de cada algoritmo;
- b) (0.7 pts) Qual algoritmo possui a pior complexidade?